Distributed systems can seem magical, and sometimes all of the magic works and our job succeeds. However, if you've worked with them for a long enough time you've found a few places where the magic starts to break down and the fact that it's actually a collection of several hundred garden gnomes* rather than a single large garden gnome.
This talk will use Apache Spark, Beam, Flink, Kafka, and Map Reduce to explore the world of data parallel distributed systems. We'll start with some happy pieces of magic, like how we can combine different transformations into a single pass over the data, working between different languages, data partitioning, and lambda serialization. After each new piece of magic is introduced we'll look at how it breaks in one (or two) of the systems.
Come to be told it's not your fault everything is broken, or if your distributed software still works an exciting preview of everything that's going to go wrong. Don't work with distributed systems? Come to be reassured you've made good life choices.
This talk will use Apache Spark, Beam, Flink, Kafka, and Map Reduce to explore the world of data parallel distributed systems. We'll start with some happy pieces of magic, like how we can combine different transformations into a single pass over the data, working between different languages, data partitioning, and lambda serialization. After each new piece of magic is introduced we'll look at how it breaks in one (or two) of the systems.
Come to be told it's not your fault everything is broken, or if your distributed software still works an exciting preview of everything that's going to go wrong. Don't work with distributed systems? Come to be reassured you've made good life choices.
MP3
אין תגובות:
הוסף רשומת תגובה